Kathryn E. Kirchoff, James Wellnitz, Joshua E. Hochuli, Travis Maxfield, Konstantin I. Popov, Shawn Gomez, Alexander Tropsha. Utilizing Low-Dimensional Molecular Embeddings for Rapid Chemical Similarity Search.https://doi.org/10.48550/arXiv.2402.07970
Popov, K., Wellnitz, J., Maxfield, T., Tropsha, A. HIt Discovery using docking ENriched by GEnerative Modeling (HIDDEN GEM): A novel computational workflow for accelerated virtual screening of ultra-large chemical libraries. Mol Inform. 2024 Jan;43(1):e202300207. doi: 10.1002/minf.202300207
Kozakov D, Grove LE, Hall DR, Bohnuud T, Mottarella SE, Luo L, Xia B, Beglov D, Vajda S. The FTMap family of web servers for determining and characterizing ligand-binding hot spots of proteins. Nature Protocols. 2015
Popova M, Isayev O, Tropsha A.* Deep reinforcement learning for de novo drug design. Sci Adv. 2018 Jul 25;4(7):eaap7885. doi: 10.1126/sciadv.aap7885;
Alekseenko, A.; Kotelnikov, S.; Ignatov, M.; Egbert, M.; Kholodov, Y.; Vajda, S.; Kozakov, D. ClusPro LigTBM: Automated Template-Based Small Molecule Docking. J. Mol. Biol. 2019. https://doi.org/10.1016/j.jmb.2019.12.011;
Korshunova M, Ginsburg B, Tropsha A, Isayev O. OpenChem: A Deep Learning Toolkit for Computational Chemistry and Drug Design. J Chem Inf Model. 2021 Jan 25;61(1):7-13. doi: 10.1021/acs.jcim.0c00971
Tropsha A, Isayev O, Varnek A, Schneider G, Cherkasov A. Integrating QSAR modelling and deep learning in drug discovery: the emergence of deep QSAR. Nat Rev Drug Discov. 2023 Dec 8. doi: 10.1038/s41573-023-00832-0