1. Zheng, S.*, Li, Y., Chen, S. et al (2020). Predicting drug–protein interaction using quasi-visual question answering system. Nature Machine Intelligence, 2(2), 134-140.
2. Wang, P., Zheng, S.*, Jiang, Y., Li, C., Liu, J., Wen, C., ... & Yang, Y. (2022). Structure-aware multimodal deep learning for drug–protein interaction prediction. Journal of chemical information and modeling, 62(5), 1308-1317.
3. Lu, W., Wu, Q., Zhang, J., Rao, J., Li, C., & Zheng, S*. (2022). TANKBind: Trigonometry-Aware Neural NetworKs for Drug-Protein Binding Structure Prediction. NeurIPS (spotlight).
4. Zheng, S.*, Tan, Y., Wang, Z., Li, C., Zhang, Z., Sang, X., Chen, H. and Yang, Y., (2022). Accelerated rational PROTAC design via deep learning and molecular simulations. Nature Machine Intelligence, 4(9).
5. Sun, Z., Zheng, S*., Zhao, H., Niu, Z., Lu, Y., Pan, Y., & Yang, Y. (2021). To improve the predictions of binding residues with DNA, RNA, carbohydrate, and peptide via multi-task deep neural networks. IEEE/ACM transactions on computational biology and bioinformatics.
6. Liu, Z., Huang, D., Zheng, S*. et al. (2021). Deep learning enables the discovery of highly potent anti-osteoporosis natural products. European Journal of Medicinal Chemistry, 210, p.112982.
7. Zheng, S.*, Yan, X., Yang, Y., & Xu, J. (2019). Identifying structure–property relationships through SMILES syntax analysis with self-attention mechanism. Journal of chemical information and modeling, 59(2), 914-923.